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Electrostatic interaction between two charged dielectric spheres in contact

James Q. Feng
Wilson Center for Research and Technology, Xerox Corporation, 800 Phillips Road, Webster, New York 14580

~Received 29 February 2000!

Of fundamental importance in numerous industrial and natural processes, the problem of two electrified
spheres has been studied by many authors. However, the problem of particular importance for understanding
electrostatic effects on powder or granular behavior, such as two dielectric spheres both carrying arbitrary
amounts of charge, is still open for investigation. In the present work, two touching dielectric spheres of equal
size and permittivity but arbitrary amounts of charge are studied by computational means of the Galerkin
finite-element method. The effects of permittivity and the ratio of charge on the spheres are the main focus
here. Because of the electric polarization, the electrostatic force can become attractive even when the two
spheres carry charges of the same sign, due to positive dielectric effects, or to become repulsive for spheres
with charges of the opposite sign, due to negative dielectric effects. In the presence of dielectrophoretic effect,
whether the electrostatic force between the two spheres is attractive or repulsive is found to be determined by
the ratio of charge on the two spheres.

PACS number~s!: 41.20.Cv, 02.70.Dh
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I. INTRODUCTION

Understanding the electrostatic interaction between
charged dielectric spheres in contact is desired for scien
description of the behavior of powder or granular materi
that consist of electrically insulating particles@1#. Those in-
sulating ~or dielectric! particles naturally acquire charg
through the mechanism of triboelectricity by contacting ea
other or the container walls@2#. The amount of charge on
each particle and the distribution of charge among the p
ticles are expected to influence the rheological behavio
powder or granular materials, which determines the deg
of difficulty in accomplishing well controlled material trans
portation as needed in many technological applications.
example, the toner used in electrophotographic copiers
printers is typically a cohesive powder, with insulating pa
ticles of a diameter about 10mm consisting of a pigmen
dispersed in a polymer resin. These toner particles are
signed to acquire charge through the mechanism of triboe
tricity ~@3–5#!. In electrophotographic processes, the to
must be delivered from a toner reservoir to the image de
opment zone. Stringent requirements of accurate contro
toner transportation in modern electrophotographic co
printing engines call for a fundamental understanding of
electrostatic effects on charged particle interactions in a
electric powder.

To enable detailed analysis, the problem needs to be
plified by reducing the number of interacting particles.
relevant model should involve at least two spheres. Con
ering two touching spheres is desired, because particle
powder or granular materials will make contact with ea
other. Powder with a narrow particle size distribution can
manufactured. But the charge distribution among dielec
particles is unlikely to become arbitrarily narrow due to t
stochastic nature of the triboelectric process. If the effec
particle size distribution is ignored, considering two equ
sized dielectric spheres allows attention to be focused on
effect of charge distribution among particles and the effec
permittivity of the dielectric particle materials.

Of fundamental importance in numerous industrial a
PRE 621063-651X/2000/62~2!/2891~7!/$15.00
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natural processes, the problem of two electrified spheres
been studied by many authors including Poisson@6#, Lord
Kevin @7#, Maxwell @8#, Russell@9#, and others. Most earlie
authors considered conducting spheres because of the
tively simpler treatments in boundary conditions. The co
plete solution in bispherical coordinates~Morse and Fesh-
bach @10#! for two charged conducting spheres in a
arbitrarily oriented uniform electric field was obtained b
Davis @11#. A less general problem of two equal-sized, u
charged conducting spheres in a uniform electric field a
fixed orientation was also solved in bispherical coordina
by Levine and McQuarrie@12# for calculating the dielectric
constant of simple gases. The investigation of two unchar
dielectric spheres in a uniform electric field in bispheric
coordinates starts with the work of Goyette and Navon@13#,
who restricted the treatment to equal-sized spheres in
electric field of a fixed orientation. The problem was furth
generalized through the efforts of Love@14#, Stoy @15,16#,
and Chaumet and Dufour@17#. To understand the atmo
spheric phenomenon of removing aerosol particles by
drometeor scavenging, the electrostatic force between a
ducting sphere and a dielectric sphere was calculated by
and Beard@18# and Grover@19# in bispherical coordinates.

The problem involving two charged dielectric spher
was not addressed in the literature until a recent publica
by Nakajima and Sato@20#. However, these authors mainl
focused on expounding the mathematical derivations, sh
ing limited results for applicability demonstration of the
reexpansion method in different problem configurations. F
instance, the exemplifying cases presented by Nakajima
Sato@20# include two conducting spheres, a charged diel
tric sphere near a grounded conducting plane, a charged
electric sphere on a thick plane wall~approximated as a very
large dielectric sphere! without surface charge, and an un
charged dielectric sphere on a thick plane wall with surfa
charge. The problem of particular relevance to the elec
static effects on powder or granular behavior, such as
dielectric spheres each carrying an arbitrary amount
charge, is still heretofore open for investigation.

In the two-sphere system with finite separation, mate
2891 ©2000 The American Physical Society
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2892 PRE 62JAMES Q. FENG
interfaces fit coordinate surfaces in a bispherical coordin
system, so that solutions to the Laplace equation can be
tained by separation of variables@10#. Hence, most author
~e.g.,@11–19#! were tempted to derive formulas in bispheri
cal coordinates. Elegant as the bispherical coordinate s
tions may seem to be, practical calculations can rarely
done without implementation of a computer code for car
ing out numerical computations due to the fact that a la
number of terms in an infinite series needs to be evalua
especially when the gap between the two spheres diminis
Moreover, the bispherical coordinate system cannot be
plied in the strict sense to cases when the spheres to
because of mathematical singularities. This fact led O’Me
and Saville@21# to seek other means of studying two touc
ing spherical conductors in an electric field.

When the particles are of spherical shape, multipole
pansion in terms of Legendre polynomials~cf. @22–24#! or in
terms of image charge series~cf. @7,25–27#! can be used to
determine the electric potential distribution. Over the yea
the multipole expansion method has been used in cons
ing a charged dielectric sphere touching a plane surface
an extreme configuration of the two-sphere system, for
culating the electrostatic adhesion force on electropho
graphic toner particles@28–31#. Here again, numerical com
putations must be carried out because large number
multipole terms are needed to obtain a converged repre
tation of the actual electric field that accurately satisfies
the boundary conditions.

In the present work, a numerical technique based on
well-established Galerkin finite-element method@32# is em-
ployed; therefore, the intrinsic limitations to two spheres~as
in the bispherical coordinate system! and the restriction on
material interface shapes~as in multipole expansions! are
eliminated. Sophisticated mathematical derivations beco
unnecessary in computing finite-element solutions. Mo
over, the finite-element method is readily applicable to mu
more complicated problem configurations if future extens
of the present analysis is desired. For simplicity, two tou
ing dielectric spheres of equal size and permittivity are
amined with each sphere carrying an arbitrary amount
charge. The effects of particle permittivity~or dielectric con-
stant! and the ratio of charge on the two spheres are the m
focus here.

II. PROBLEM FORMULATION

As shown in Fig. 1, the problem considered here cons
of two touching dielectric spheres, namely, sphere 1
sphere 2, of the same radiusR and the same permittivitye,
carrying chargesQ1 andQ2 in a dielectric surrounding me

FIG. 1. Definition sketch of two touching dielectric spheres
equal size.
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dium of permittivity e0. For simplicity, the charge on eac
sphere is assumed to be distributed uniformly over the s
face. For convenience, variables are made dimensionles
measuring length in units ofR, electric potential in units of
Q2 /(4pe0R), total charge on sphere in units ofQ2, and
surface charge density in units ofQ2 /(4pR2). Thus, sphere
1 has a net chargeQ5Q1 /Q2, whereas the net charge o
sphere 2 becomes unity. The dimensionless net charge o
spheres becomes the same as their dimensionless su
charge densities. In the absence of an externally applied e
tric field, the problem becomes axisymmetric about the l
connecting the centers of the two spheres, i.e., thez axis of
the zr axisymmetric cylindrical coordinates used in th
present work.

The electric potentialV, inside and outside the spheres,
governed by the Laplace equation

¹2V50. ~1!

At dielectric material interfaces such as the surfaces of
spheres, the continuity of the tangential component of e
tric field and surface charge induced change in the nor
component of the electric displacement vector are descr
by

Vi5Vo , n•~k“Vi2“Vo!5H Q, on S1

1, on S2 ,
~2!

wherek[e/e0 is the dielectric constant with respect to th
permittivity of the surrounding mediume0. The subscriptsi
ando in the present work are used to denote variables a
ciated with regions inside and outside the spheres. The s
variables without those subscripts apply in all the regions

Along the axis of symmetry, the Neumann boundary co
dition is applied as

n•“V50, on Ssym. ~3!

At a large distance on the asymptotic boundary, a con
eration of the monopole charge alone should be sufficie
accurate, the asymptotic boundary condition is applied i
Dirichlet form as

V5
Q

A~z11!21r 2
1

1

A~z21!21r 2
, on Sasymp. ~4!

The electrostatic interaction force acting on sphere 1~de-
noted asF), which should only have a nonzeroz component,
can be computed by integrating the difference of the M
well stress tensor across the material interface over the
face of sphere 1 as

F5
1

pES1
H nz

2 F S 12
1

k D ~n•¹Vo!21~k21!~ t•¹Vo!2

2
2Q

k
~n•¹Vo!2

Q2

k G2tzQ~ t•¹Vo!J dS, ~5!

wheren andt denote the local unit normal and unit tangent
vectors on the surface, andF is a dimensionless quantit
scaled in units ofQ2

2/(16pe0R2). In the absence of an ex

f
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PRE 62 2893ELECTROSTATIC INTERACTION BETWEEN TWO . . .
ternally applied electric field, the total electrostatic force a
ing on sphere 2 is simply given by2F.

Now, the problem can be treated by solving the elec
potential distribution for a given value ofQ and then deter-
mining F from Vo andQ according to Eq.~5!. This approach
requires tedious solution ofVo for many different values of
Q to gain adequate insights into the general behavior ofF as
a function ofQ for a given particle permittivity.

From a phyical point of view, however, the electrosta
force can be expressed as a sum of three lumped terms

F~Q!5aQ22bQ1g, ~6!

as similarly discussed for the case of electric field deta
ment of a charged dielectric sphere from a plane surface~cf.
@24,29,33#!. On the right side of Eq.~6!, the first term is due
to the attraction from the image charge ofQ induced in
sphere 2. The second term represents the Coulomb f
from the interaction betweenQ and the electric field gener
ated by the charge on sphere 2. The third term describes
fact that a net dielectrophoretic force can be induced by
electric field from the charge on sphere 2~which is a con-
stant normalized as unity in the present notation! even when
sphere 1 does not carry net charge~i.e., Q50). In general,
the coefficientsa, b, andg can be functions of the particl
permittivity and geometric configuration such as the parti
size ratio as well as the distance between particles. For
present problem, because of symmetry in the two equal-s
spheres with the same value of permittivity, a relationshi

g5a ~7!

is expected. Thus, only two independent points on the
rabola, as described by Eq.~6!, are required to determine th
two unknown coefficientsa and b for a complete descrip
tion of the behavior ofF(Q) for a given value of particle
permittivity k.

III. COMPUTATIONAL TECHNIQUES

Instead of specifically formulating the problem in b
spherical coordinates or going through a multipole expans
procedure for spherical geometry, the computational te
nique used in the present work is based on a straightforw
application of the well-established Galerkin finite-eleme
method that is generally applicable to virtually any geom
ric configuration and equation system@32#. Therefore, the
two-dimensional problem domain~in zr space! is divided
into a set of nine-node quadrilateral elements~see Fig. 2!,
with the elements at the point where two spheres touch
coming triangular shaped as degenerated from the quad
eral elements by collapsing one of the element sides
acommodate the cusp geometry. These degenerated elem
need no special treatment in code implementation, in view
previous experience with similar circumstances@33–35# and
the comments of Hughes@36#. With the convenience of the
finite-element domain discretization, the mesh is made m
finer near the surfaces of the spheres as needed for acc
evaluation of the expected more significant variations
electric potential than elsewhere.

On each element, which is mapped onto a unit squar
thejh ~computational! domain, the unknown electric poten
-
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tial is expressed in an expansion of nine biquadratic fin
element basis functions, each associated with an elem
node. As a consequence, the nodal values of electric po
tial become the expansion coefficients. By the same tok
the spatial coordinates are expressed in an expansion o
same type of basis functions with the nodal coordinates
the expansion coefficients, which are commonly referred
as isoparametric mapping. Galerkin’s method of weigh
residuals is applied by multiplying the Laplace equation~1!
with each finite-element basis function as used for the exp
sion of electric potential and integrating the weighted eq
tion over the entire problem domain@37#. The obtained
weighted residual equations is a set of algebraic equat
with finite degrees of freedom.

The unknown electric potential here can be determined
solving a set of linear residual equations, which takes o
one step of Newton iterations as usually used for solv
nonlinear algebraic equations~e.g., @37,38#!. Once the elec-
tric potential distribution is obtained, the electrostatic inte
action force on each sphere can be computed accordin
Eq. ~5!, in ‘‘post-processing’’ the solution. In the prese
work, the integral is discretized and computed in the sa
way as with the finite-element method in computin
weighted residual equations. Actually, Eq.~5! is added into
the set of weighted residual equations from Laplace’s eq
tion as an auxiliary equation associated with an auxilia
unknownF. Thus,F is solved simultaneously with the elec
tric potentialV.

To reduce errors arising from induced multipoles in usi
Eq. ~4!, the asymptotic boundary is positioned at a lar
spherical surface of radius 20 centered at the coordinate
gin where the two spheres touch. Thus, the distance f
each sphere to the asymptotic boundary is much greater

FIG. 2. Finite-element mesh for two touching spheres:~a! gen-
eral view; ~b! detail around touching spheres.
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2894 PRE 62JAMES Q. FENG
10, where the effects of higher-order multipoles than tha
the monopole become negligible.

IV. RESULTS AND DISCUSSION

Because the problem is solved here by means of num
cal computations, the accuracy of the numerical results ne
be examined first. An effective indicator is found to be t
difference between the directly computed values ofuFu on
sphere 1 and the magnitude of force on sphere 2, which
be appreciated when considering a simple case withk51
and Q50. It is immediately recognized from Eq.~5! that
F50 on sphere 1 fork51 andQ50 because each term o
the right side is multiplied by a factor of 0. However,
computing the force on sphere 2 by integrating the Maxw
stress tensor overS2 , Q in Eq. ~5! should be replaced by 1
Thus, the value of force so computed cannot be exactly z
and it represents the magnitude of the actual numerical e
As expected, the value of force on sphere 2 atk51 andQ
50 varies with the number of elements used in tessella
of the problem domain. For the mesh shown in Fig. 2 w
2250 elements used in the domain tessellation, the dire
computed value of force on sphere 2 atk51 andQ50 is
8.2631025, indicating that the numerical error can be co
sidered negligible here. Figure 3 shows the equipotential
electric field for k51 and Q50, where the equipotentia
surfaces are concentric spherical surfaces around sphe
without any modification due to the presence of sphere 1
physically expected. For comparison, the equipotentials
electric field for k53 and Q50 are illustrated in Fig. 4
where equipotential surfaces are distorted and electric fi

FIG. 3. Equipotential contours of the case withk51 and Q
50. The equipotential values are 0.05, 0.06, 0.075, 0.1, 0.15,
0.3, 0.5, 0.75, and 1.

FIG. 4. Equipotential contours of the case withk53 and Q
50. The equipotential values are 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
0.45, 0.5, 0.6, 0.7, and 0.8.
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strength is reduced in sphere 1.
The case withk51 is special because the effects of i

duced multipoles in dielectric media are completely elim
nated. Without the polarization effects,a in Eq. ~6! becomes
zero and the parabola inQ2F space is degenerated into
straight line through the originQ5F50. The slope of the
line 2b can be obtained by computingF at Q51. From
physical consideration,F should become21 at Q51, re-
flecting a mutually repulsive force between two spheres c
rying the same amount of charge. Here, the computed va
of F on sphere 1 and force on sphere 2 are21.000 046 0 and
1.000 045 5, respectively. Both the deviation from the ex
theoretical value and the difference betweenuFu on sphere 1
and the magnitude of force on sphere 2 are very small h
validating the adequacy of the present finite-element tes
lation.

To determine the two unknown coefficientsa andb for a
complete description ofF as a function ofQ, in general, the
computed values ofF(Q) at Q50 and 1 appear to be th
most convenient choices. According to Eqs.~6! and ~7!, a
and b can be readily determined from the computedF(0)
andF(1) as

a5F~0! and b52F~0!2F~1!. ~8!

As expected, the parabola ofF(Q) has two roots atF50 as
given by

Q5
1

2 Fb

a
6AS b

a D 2

24G . ~9!

Noteworthy here is that the two roots are of the same s
and reciprocal to each other as evidenced by

1

4 Fb

a
1AS b

a D 2

24GFb

a
2AS b

a D 2

24G51 ~10!

and the symmetry of the system. Furthermore, in delinea
the intervals ofQ for attractive and repulsive electrostat
forces, these two roots can serve as the discriminating po

For the case of dielectric spheres withk53, as represen-
tive for the situation of electrophotographic toner particles
air, the computed values ofF(Q) at Q50 and 1 are
0.208 36 and20.774 82, respectively. Thus, we havea
50.208 36 andb51.191 54 from Eq.~8!. The two roots at
F50 are 0.180 57 and 5.538 09. Because botha andb are
positive, F has a minimum value~corresponding to maxi-
mum repulsion between the two spheres! at the middle of the
interval between the two roots, i.e.,Qm5b/(2a)
(52.859 33 fork53). The distribution of electric field for
maximum repulsion to occur is shown in Fig. 5 with equip
tential contours. The field strength in sphere 1 appears to
much weaker than that in sphere 2, because sphere 1
greater amount of charge on its surface. Interestingly,
maximum repulsion between the two spheres does not h
pen when the two spheres carry the same amount of ch
~i.e., Q51) as one would have intuitively expected. Als
somewhat counterintuitive is that two particles carryi
charges of the same sign do not necessarily repel each o
provided the difference between the particle charges is la
enough; this is due to the dominant dielectric force.

2,

.4,
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The computational results ofa andb are shown as func
tions of k in Figs. 6 and 7, respectively. As can be seena
takes positive values that increases withk for k.1. Positive
a represents a positive dielectrophoretic force on sphere
the direction of the gradient of electric field generated by
charge on sphere 2. Ifk,1, a becomes negative corre
sponding to a negative dielectrophoretic effect that ari
when the particles are less polarizable than the surroun

FIG. 5. Equipotential contours of the case withk53 and Q
52.859 33. The equipotential values are in increments of 0.25 f
0.75 to 3.25.

FIG. 6. Plot ofa as a function ofk: ~a! general view;~b! detail
for k<10.
in
e

s
ng

medium. In contrast,b is always greater than 1 except fo
k51 whereb exactly equals 1. Thus, the Coulomb forc
term in Eq.~6! is always enhanced by the polarization effe

Figure 8 shows severalF(Q) curves for various values o
k. Similar to the case ofk53, opportunities for obtaining a
repulsive electrostatic force are rather limited~in the interval
between the two roots of positive values! in general for two
nearby particles ofk.1, due to the positive dielectro
phoretic effect. A significant attractive electrostatic for
~positiveF) appears either when two particles carry oppos
signed charge as described by negative values ofQ or when
the same-signed charges on two particles differ consider
in amount as represented by large positive values ofQ. As k
increases from unity, the two roots converge toQ51 as a
consequence ofb/a→2 @cf. Eq. ~10!#. Moreover, the mag-
nitude of the repulsive electrostatic force is also limited b
finite extreme value, whereas the magnitude of the attrac
electrostatic force has no physical limit. Fork,1, the situ-
ation is just the opposite due to the negative dielectrophor
effect. Attractive electrostatic force can only be obtained
the interval between the two negative valued roots and
magnitude is limited by the finite extreme value. Th
common-sense based intuition that particles with l
charges repel and those with opposite charges attract ca

m

FIG. 7. Plot ofb as a function ofk: ~a! general view;~b! detail
for k<10.
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2896 PRE 62JAMES Q. FENG
strictly applicable only to particles of unity dielectric con
stant (k51 as described by a degenerated line in Fig.!
when dielectrophoretic effects vanish. Therefore, confus
results are expected in the dielectric force measurem
with Coulomb’s torsion balance~cf. Ref. @8#! when the sepa-
ration between two spheres becomes relatively small.

For convenience of reference, the difference and med
value of the two rootsuDQu andQm as well as the value o
F(Qm) are listed in Table I for variousk. The relative range
covered between the two roots as represented byuDQu is
shrinking ask moves away from unity. The two roots as we
asQm converge toQ51 andQ521, with k→` and→0,
respectively. The magnitude ofF(Qm) is always less than
that of Qm , as consistent with the physical expectation th
the dielectrophoretic effect reduces the net interaction fo
at Q5Qm from that described by Coulomb’s law for th
force between two point charges located at the centers o
two spheres~as represented by the line in Fig. 8 fork51).

FIG. 8. Curves ofF vs Q for k 50.01 ~dot-dashed!, 0.1
~dashed!, 0.5 ~long dashed!, 1 ~solid!, 2 ~long dashed!, 10 ~dashed!,
and 100 ~dot-dashed!. Bordered by the solid line ofk51, the
curves on the left correspond tok,1, whereas those on the righ
are for k.1. The electrostatic force becomes attractive whenF
.0 and repulsive whenF,0.

TABLE I. Values of uDQu, Qm , andF(Qm) for variousk.

k uDQu Qm F(Qm)

0.001 0.868 78 21.090 27 0.739 58
0.01 2.023 27 21.422 47 0.886 28
0.05 3.022 77 21.812 26 1.045 47
0.1 3.783 06 22.139 60 1.187 68
0.5 11.130 37 25.654 32 2.870 33
0.8 32.842 58 216.451 70 8.241 85
2 9.212 13 4.713 37 22.399 30
5 3.230 54 1.899 76 21.038 84

10 1.831 01 1.355 78 20.786 88
20 1.085 63 1.137 83 20.686 20
50 0.538 91 1.035 67 20.632 13

100 0.311 65 1.012 07 20.623 79
1000 0.099 53 1.001 24 20.615 36
g
ts

n

t
e

he

In spite of the shrinking range between the two roots,
ratio F(Qm)/Qm appears to approach nonzero limit values
k increases or decreases from unity. Ask→1, F(Qm)/Qm
approaches20.5 from both sides.

V. CONCLUDING REMARKS

The equation governing the electrostatic interaction
tween two touching dielectric spheres of equal size and p
mittivity with each sphere carrying an arbitrary amount
charge is solved here by means of Galerkin finite-elem
computations. Physically recognizing a quadratic relatio
ship, Eq. ~6!, enables an efficient means to determine
electrostatic force on each sphere as a function of the
charge ratio of the two spheresF(Q). By virtue of the sys-
tem symmetry@consequentlya5g in F(Q)], only two so-
lutions at two different values of the charge ratioQ need to
be computed for a given value of the particle dielectric co
stantk. For systems without the symmetry, three solutions
three different values ofQ should be sufficient for determin
ing the three coefficientsa, b, andg in Eq. ~6! at a givenk.
Unlike most previous publications on two electrified pa
ticles with the limitations either due to the bispherical coo
dinate system or the simple geometry for image charge
pansions, the computational method described in the pre
work is quite versatile and can be readily extended to a g
variety of problem configurations involving many more pa
ticles with even irregular particle shapes. Restricting
analysis to the case of two equal-sized spheres here is
due to the limitation of the computational method; it is rath
for a better focused analysis that provides important phys
insights.

Whenk51, polarization effects vanish and the quadra
function of F(Q) degenerates to a linear function becau
a5g50 andb51 in Eq. ~6!. For the case ofk.1 where
the positive dielectrophoretic effect appears, the two nea
dielectric particles are more susceptible to an attractive e
trostatic force even when they carry charges of the sa
sign. Repulsive electrostatic force can only be obtained i
restrictive range of charge ratio values, which is shrinki
with increasingk. Thus, attractive electrostatic force can o
cur even when the two spheres carry charges of the s
sign. In contrast, negative dielectrophoretic effect comes
play whenk,1, such that attractive electrostatic force b
tween two nearby dielectric particles cannot be obtained o
side a restrictive range of charge ratio values. Two nea
dielectric particles ofk,1 can experience a repulsive ele
trostatic force even when they carry charges of the oppo
sign. In the presence of dielectrophoretic effect, whether
electrostatic force between the two spheres is attractive
repulsive is determined by the ratio of charge on the t
spheres.

In a typical powder or granular material, the surroundi
medium is air or a gas with permittivity about the value
vacuum and thereforek is greater than unity. Although the
bulk averaged net charge should be zero on a macrosc
scale, each dielectric particle is likely to carry a charge d
ferent from its neighbors either in amount or sign due to
stochastic nature of the triboelectric charging proce
Hence, electrostatic force among charged dielectric parti
is expected to enhance the macroscopic cohesivity of pow



t
s
m
ic
la
ar
lp

sta-

nt
ns.

PRE 62 2897ELECTROSTATIC INTERACTION BETWEEN TWO . . .
or granular materials, due to the positive dielectrophore
effect between neighboring particles. For a dense suspen
of charged dielectric particles in a dielectric liquid mediu
where the Debye length is much greater than the part
size, negative dielectrophoretic effect may come into p
when the liquid permittivity becomes greater than solid p
ticles ~i.e., k,1). Negative dielectrophoretic effect can he
a
n
te
n

-

s

-
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prevent particles from forming aggregates and therefore
bilize the suspension.
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